

NSA Senior Project Proposal

“Finding Algorithmic Bits in a Binary Haystack”

Background: There are many situations in which one would like to determine
whether an executable program (e.g., .exe or .dll file) contains an instantiation of a
particular algorithm. Sometimes the details of the algorithm itself may be
incomplete or unknown – e.g., the algorithm performs matrix multiplication
followed by an inversion. In other cases, a complete specification of the algorithm
may be available or only a partial specification is provided but with known
constants unique to the algorithm – e.g., SHA-1 contains magic values that could be
searched for without full knowledge of the hash function.

Key Research Questions:

 What types of properties / characteristics of an algorithm are strong
indicators of and could be used to identify an instance of an algorithm in
executable code?

 How can these properties / characteristics be specified efficiently to an
automated tool? What if only partial knowledge of the target algorithm is
known?

 What are some methods for finding probable instantiations of a target
algorithm in executable code? Evaluate the effectiveness of different
approaches when used in isolation and in conjunction with other techniques.

 Can the properties/characteristics be automatically derived if an
implementation of the target algorithm is given as input?

Problem Statement: Design and develop a solution for finding, with high
probability, potential instantiations of a particular algorithm or capability within a
binary executable program. The output of the solution should identify possible
entry/exit points of the targeted algorithm within the program in a meaningful
human readable format. The potential instantiations should be presented in
priority order with the most probable displayed first along with a confidence rating
for each of the solutions. The user should be able to specify a confidence threshold
whereby any potential instantiations of the algorithm found with a confidence
rating that falls below the threshold is discarded. The preferred implementation
would be as a plugin module for the IDA Pro disassembler, but other disassemblers
may be used if desired.

Project Outline:

 Design manual (i.e., human involved) processes and methods for identifying
intrinsic properties of an algorithm. What are the types of algorithmic
characteristics or properties that are likely to be manifested at the binary
level, independent of machine format and compiler optimizations? How can a
user specify these properties in a reasonable amount of time (i.e., ideally
without having to implement the entire algorithm) to an automated tool?

How might an automated tool be constructed that mirrors the manual
processes/methods designed above and is capable of identifying the unique
properties of an algorithm from source/binary code without human
intervention?

 Design automated methods for finding a probable instantiation of an
algorithm based upon the intrinsic properties specified (by a user) using the
approach designed above. How can the automated tool score the quality or
likelihood of the found solution(s) being correct to provide the user with a
confidence rating in the results?

 Develop a prototype implementation of your approach (preferably as an IDA
Pro plugin module). To scope the solution, assume the target binaries are
32-bit x86 programs. It is recommended to keep all platform specific code in
a separate module to make the solution easier to port to other platforms, but
not required.

 As a proof-of-concept, select at least two algorithms with differing
properties/characteristics and implement them as standalone C/C++
programs. Create additional variants of these programs by compiling with
different optimization settings on at least two different compilers.

o Test your prototype implementation by running the plugin against the

disassembly of the standalone program variants. Does the plugin
successfully identify the algorithm implementations? Is there any
variance in the confidence ratings between different compilers,
compiler optimizations, etc? Are there any false positives?

o Test your plugin by running it against the disassemblies of programs

that do not contain the target algorithm. How many false positives are
identified? How high is the confidence rating for each wrongly
identified algorithm?

o Test your plugin by running it against the disassemblies of programs
that contain both the target algorithm and other unrelated code. Does
the plugin correctly identify the target algorithm? How many false
positives are identified? What is the difference in confidence rating
between the target algorithm and any false positives that are
identified?

