
INTRODUCTION TO IA-32

IA-32

▪ Assembly Language
▫ 32-bit Intel
▫ Most common personal computer

architecture
▫ Backwards compatible for IA-64

▪ Other Names
▫ x86, x86-32, i386

History of IA-32

▪ History
▫ Derives from Intel 16-bit architecture
▫ First implemented on Intel’s 80386 in 1985
▫ Forked into 64-bit implementations
◾ Intel’s IA-64 in 1999
◾ AMD’s AMD64 in 2000

Reference Manuals

▪ Intel Developer’s Manuals
▫ Documentation Changes
▫ Volume 1: Basic Architecture
▫ Volume 2A: Instruction Set Reference A-M
▫ Volume 2B: Instruction Set Reference N-Z
▫ Volume 3A: System Programming Guide
▫ Volume 3B: System Programming Guide

http://www.intel.
com/products/processor/manuals/

Assembly Notation

▪ AT&T
▫ Source precedes destination
▫ Used commonly in old GNU tools (gcc, gdb,

…)
▫ Example:

▪ Intel
▫ Destination precedes source
▫ Used elsewhere (MASM, NASM, …)
▫ Example: mov eax, 4 // GP register assignment

mov [eax], 4 // Memory assignment

mov $4, %eax // GP register assignment

mov $4, %(eax) // Memory assignment

Registers

▪ Processor Memory
▫ Act as variables used by the processor
▫ Are addressed directly by name in assembly code
▫ Very efficient

◾ Good alternative to RAM

▫ Many flavors
◾ Data registers
◾ Address registers
◾ Conditional registers
◾ General purpose registers
◾ Special purpose registers
◾ …

IA-32 Registers

IA-32 Registers

▪ General Purpose Registers
▫ EAX

◾ General storage, accumulator, results

▫ EBX
◾ General storage, base, pointer for data in DS segment

▫ ECX
◾ General storage, counter

▫ EDX
◾ General storage, data, I/O pointer

▫ ESI, EDI
◾ General storage, pointer for memory copying operations
◾ Source index, destination index

IA-32 Registers

▪ General Purpose Registers
▫ EBP
◾ Stack “base pointer”
◾ Current base of stack data

▫ ESP
◾ “Stack pointer”
◾ Current location of the stack

IA-32 Registers

▪ Extended Instruction Pointer (EIP)
▫ The program counter
▫ Pointer to the next instruction
▫ Altered by special instructions only
◾ JMP, Jcc, CALL, RET, and IRET

▫ Exploitation focuses on controlling the EIP

IA-32 Registers

▪ Status and Control (EFLAGS)
▫ Processor info/modes, instruction status

flags
▫ Basis for conditional code execution

IA-32 Registers

▪ Important Flags
▫ Carry flag (CF)

◾ Set if an arithmetic operation generates a carry bit
▫ Parity flag (PF)

◾ Set if the least-significant byte of a result contains an even
number of ones

▫ Zero flag (ZF)
◾ Set if the result is zero

▫ Sign flag (SF)
◾ Equal to the most significant bit of a result

▫ Overflow flag (OF)
◾ Set if integer overflows

Segmentation Memory
Management Model
▪ Segmentation

IA-32 Registers

▪ Segment Registers
▫ 16-bit memory segment selectors
▫ CS
◾ Code
◾ Altered implicitly by calls, exceptions, etc.

▫ DS
◾ Data

▫ SS
◾ Stack
◾ May be altered explicitly, allowing for multiple

stacks

mov ss:[edx], eax // Segment:[Offset]

IA-32 Registers

▪ Segment Registers
▫ 16-bit memory segment selectors
▫ ES
◾ Data

▫ FS
◾ Data

▫ GS
◾ Data

IA-32 Registers

▪ Other Registers
▫ FPU

◾ ST0-ST7, status word, control word, tag word, …
▫ MMX

◾ MM0-MM7
◾ XMM0-XMM7

▫ Control registers
◾ CR0, CR2, CR3, CR4

▫ System table pointer registers
◾ GDTR, LDTR, IDTR, task register

▫ Debug registers
◾ DR0, DR1, DR2, DR3, DR6, DR7

Alternate General Purpose
Register Names

Instruction Operands

▪ Instructions Operate on:
▫ Registers
◾ EIP cannot be an operand
� Why? …What was EIP again?

▫ Immediates
◾ Literal, constant values

▫ Memory addresses
◾ Use other operands as pointers to address

memory

mov eax, 4

mov [eax], 4

Operand Addressing

▪ Instruction Addressing
▫ Sources are addressed by:
◾ Immediates
◾ Pointers in registers
◾ Pointers in memory locations
◾ An I/O port

▫ Destinations are addressed by:
◾ Pointers in registers
◾ Pointers in memory locations
◾ An I/O port

Operand Addressing

▪ Relative Offset Computation
▫ Displacement
◾ None, 8, 16, or 32-bits

▫ Base
◾ Value in GP register

▫ Index
◾ Value in GP register

▫ Scale factor
◾ 1, 2, 4, or 8
◾ Multiplier for index

mov eax, [esi + ecx*4 + 4]

Data Types

Common IA-32 Instructions

Move Instruction

▪ MOV
▫ Moves a value from a source to a destination

mov eax, 4 // eax = 4

No Operation (NOP)

▪ NOP
▫ Doesn’t do anything
▫ Handy placeholder
◾ Also handy for shellcoding

▫ Hex value
◾ \x90

Arithmetic Instructions

▪ ADD, ADC
▫ Add, add with carry

▪ SUB, SUBB
▫ Subtract, subtract with borrow

▪ MUL, IMUL
▫ Multiply

▪ DIV, IDIV
▫ Divide

▪ NEG
▫ Two’s-complement negate

ADD eax, 1 // Equivalent to INC eax

Binary Logic Instructions

▪ AND, OR, NOT
▫ And, or, not

▪ XOR
▫ Xor trick (used by compilers and shellcoders)
◾ Equivalent to “eax = eax ^ eax;” in C

xor eax, eax

Binary Operation
Instructions
▪ SAL, SAR

▫ Shift arithmetically left/right
▪ SHL, SHR

▫ Shift logically left/right

Load Instructions

▪ LEA
▫ May use relative or absolute address
▫ Typically used to create an absolute address

from relative offsets in a general purpose
register

▪ LDS
▫ Load pointer using DS

▪ LES
▫ Load ES with pointer

Compare Instructions

▪ CMP (aka arithmetic compare)
▫ Compares two numbers

◾ Performs a subtraction (SRC1 - SRC2)
▫ Sets CF, OF, SF, ZF, AF, and PF flags

▪ TEST (aka logical compare)
▫ Compares two numbers
▫ Sets SF, ZF, PF (also sets CF, OF to zero)

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);
IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;
PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;

Jump Instructions

▪ JMP
▫ Unconditional transfer of code execution
▫ May use relative or absolute address

Conditional Jump
Instructions
▪ Jcc

▫ cc is called the conditional code
▫ Conditional codes
◾ JE/JZ (jump equal/zero, ZF = 1)
◾ JNE/JNZ (jump not equal/not zero, ZF = 0)
◾ JECXZ (jump ECX zero, ECX = 0)
◾ JGE/JNL (jump greater, equal/not less, (SF xor OF)

= 0)
◾ …

▫ JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JLE,
JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,
JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE,
JPO, JS, JZ

Stack

▪ LIFO Memory Structure
▫ x86: stack grows downward (high to low

addresses)

Stack Instructions

▪ PUSH
▫ Decrement stack pointer, put operand at

ESP

▪ POP
▫ Load stack value, increment stack pointer

Stack Instructions

▪ PUSHA
▫ Push all GP registers to the stack

▪ POPA
▫ Pop data from stack into all GP registers

▪ ENTER
▫ Enter stack frame

▪ LEAVE
▫ Leave stack frame

push ebp; mov ebp, esp

mov esp, ebp; pop ebp

Near Call and Return
Instructions
▪ Near Call/Return

▫ Intrasegment call/return
▫ Call or return to code in the same code

segment
▪ Far Call/Return

▫ Intersegment call/return
▫ Call or return to code not in the same

segment

Near Call and Return
Instructions
▪ Near Call (CALL)

▫ Pushes the current EIP (the return address)
▫ Loads the offset of the called procedure

▪ Near Return (denoted RET or RETN)
▫ Pops the return address into EIP
▫ If optional n argument, increment ESP by n
◾ For clearing out parameters

Far Call and Return
Instructions
▪ Far Call (CALL)

▫ Pushes the current CS (the return code
segment)

▫ Pushes the current EIP (the return address)
▫ Loads the CS, offset of the called procedure

▪ Far Return (denoted RET or RETF)
▫ Pops the return address into EIP
▫ Pops the return code segment
▫ If optional n argument, increment ESP by n
◾ For clearing out parameters

Calls and Returns

Calls and Returns

Calls and Returns

String Operation
Instructions
▪ INS, OUTS

▫ Input/output string from/to a port
▪ MOVS, MOVSB, MOVSW, MOVSD

▫ Moves data from one string to another
▪ LODS, LODSB, LODSW, LODSD

▫ Loads data into a string (DS:[(E)SI] to (E)
AX)

▪ STOS, STOSB, STOSW, STOSD
▫ Store data in a string (ES:[(E)DI] with (E)AX)

String Operation
Instructions
▪ CMPS, CMPSB, CMPSW, CMPSD

▫ Compares strings in memory
▪ SCAS, SCASB, SCASW, SCASD

▫ Compare a string (aka scan string)

Repeat String Operation
Instructions
▪ REP, REPE, REPZ, REPNE, REPNZ

▫ Repeats using the ECX register
▫ REPxx
◾ Where xx is a string operation instruction

Interrupt Instructions

▪ INT
▫ Generate a software interrupt
▫ INT 3h
◾ Debugger breakpoint
◾ Instruction hex value: \xCC or \xCD\x03

▫ INT 80h
◾ Unix system call

▪ RETI
▫ Return from interrupt

Questions/Comments?

Some IA-32 Pictures from:
http://www.intel.com/products/processor/manuals/

