INTRODUCTION TO IA-32

TA-32

» Assembly Language
- 32-bit Intel

- Most common personal computer
architecture

- Backwards compatible for |IA-64

= Other Names
- x86, x86-32, 1386

History of IA-32

= History
- Derives from Intel 16-bit architecture
- First implemented on Intel’s 80386 in 1985
- Forked into 64-bit implementations

= Intel’'s IA-64 in 1999
= AMD’'s AMDG64 in 2000

Reference Manuals

 Intel Developer's Manuals
- Documentation Changes
- Volume 1: Basic Architecture
> Volume 2A: Instruction Set Reference A-M
> Volume 2B: Instruction Set Reference N-Z
- Volume 3A: System Programming Guide
- Volume 3B: System Programming Guide

http://www.intel.

Assembly Notation

o AT&T

Source precedes destination
Used commonly in old GNU tools (gcc, gdb,

Example: mov $4, %eax // GP register assignment
mov $4, %(eax) // Memory assignment
= |Intel

Destination precedes source
Used elsewhere (MASM, NASM, ..))

Example mov eax, 4 // GP register assignment

mov [eax], 4 // Memory assignment

Registers

* Processor Memory

- Act as variables used by the processor
- Are addressed directly by name in assembly code

- Very efficient
» Good alternative to RAM

- Many flavors
= Data registers

Address registers

« General purpose registers
Special purpose registers

Conditional registers

IA-32 Registers

. General-Purpose Reqlsters

Segment Reqglsters
15 0

] Program Status and Control Reglster
1

0

1 Instruction Polnter]| 0

L]

IA-32 Registers

= General Purpose Registers
- EAX

= General storage, accumulator, results

- EBX

= General storage, base, pointer for datain DS segment

- ECX

= General storage, counter

- EDX

= General storage, data, I/O pointer

- ESI, EDI

- General storage, pointer for memory copying operations

IA-32 Registers

= General Purpose Registers
- EBP

= Stack "base pointer”
= Current base of stack data

- ESP

= "Stack pointer”
» Current location of the stack

IA-32 Registers

= Extended Instruction Pointer (EIP)

- The program counter
- Pointer to the next instruction

- Altered by special instructions
= JMP, Jcc, CALL, RET, and IRET

- Exploitation focuses on controlling the EIP

IA-32 Registers

» Status and Control (EFLAGS

Processor info/modes, instruction status
flags
Basis for conditional code execution

ID Flag (1D3
Virtual Interrupt Pending
Virtual Interrupt Flag (VIF)

I/O Privilege Level (IOPL)
Overflow Flag (OF)

ty Flag (PF)
Carry Flag (CF)

X
X
X
X
X
X
X
X
S
C
X
X
S
S
S
S
S

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

xXOw

Reserved bit positions. DO NOT USE
Always set to values previously read

IA-32 Registers

= Important Flags

= Carry flag (CF)
= Set if an arithmetic operation generates a carry bit
Parity flag (PF)

= Set if the least-significant byte of a result contains an even
number of ones

Zero flag (ZF)

= Set if the result is zero

Sign flag (SF)

= Equal to the most significant bit of a result
Overflow flag (OF)

= Set if integer overflows

m}

m}

u]

m}

| Segmentation Memory

Management Model
= Segmentation

Segmented Model

Segments /:

i Offset (effectlve address) " Unear [1
Address
> Space*

Logical .
Addrece Segment Selector -

IA-32 Registers

= Segment Registers

16-bit memory segment selectors

CS

Code

Altered implicitly by calls, exceptions, etc.
DS

Data
SS

Stack

May be altered explicitly, allowing for multiple
stacks

mov ss:[edx], eax // Segment: [Offset]

IA-32 Registers

= Segment Registers
- 16-bit memory segment selectors
- ES
= Data
- FS
= Data
- GS
= Data

IA-32 Registers

= Other Registers
- FPU

= STO-ST7, status word, control word, tag word, ...
- MMX

= MMO-MM7
= XMMO-XMM7/

- Control registers
= CRO, CR2, CR3, CR4

- System table pointer registers
= GDTR, LDTR, IDTR, task register

- Debug registers
- DRO, DR1, DR2, DR3, DR6, DR7

Alternate General Purpose
Register Names

General-Purpose Registers

1815 8 7 0 16-bit 32-bit

| Instruction Operands

= Instructions Operate on:

- Registers

= EIP cannot be an operand
I Why? ...What was EIP again?

> Immediates
= Literal, constant values

mov eax, 4

- Memory addresses

Operand Addressing

 Instruction Addressing

- Sources are addressed by:
= Immediates
= Pointers in registers
= Pointers in memory locations
= An |/O port
- Destinations are addressed by:
= Pointers in registers

- Pointers in memory locations

Operand Addressing

= Relative Offset Computation

Displacement
None, 8, 16, or 32-bits

Base Base Index Scale Displacement
Value in GP reqgister Q¥ .
Index EEE | EBX
)] - ECX

Value in GP register [| DX |

ESP A
Scale factor £BP EEE;
1,2 4, 0or8 o DI

Multiplier for index

Offset = Base + (Index * Scale) + Displacement

mov eax esi + ecx*4 + 4

Data Types

7 0
N
15 87 0
High | Low
Bytie |Byte
N+1 N
31 16 15 0
High Word | Low Word
N+2 N
: 63 32 31 0
High Doubleword Low Doubleword
N+4 N
127 64 63 0
High Quadword Low Quadword
N+8 N

Byte

Word

Doubleword

Quadword

Double
Quadword

Common IA-32 Instructions

Move Instruction

- MOV

> Moves a value from a source to a destination

mov eax, 4 // eax = 4

No Operation (NOP)

 NOP

- Doesn’t do anything

- Handy placeholder
= Also handy for shellcoding

- Hex value
= \x90

Arithmetic Instructions

ADD, ADC
- Add, add with carry

ADD eax, 1 // Equivalent to INC eax

SUB, SUBB

- Subtract, subtract with borrow

MUL, IMUL
- Multiply
DIV, IDIV

- Divide
NEG

Binary Logic Instructions

= AND, OR, NOT
= And, or, not

= XOR

- Xor trick (used by compilers and shellcoders)
= Equivalent to "eax = eax " eax;" in C

XOor eax, eax

Binary Operation
Instructions

= SAL, SAR

- Shift arithmetically left/right
 SHL, SHR

- Shift logically left/right

Load Instructions

 LEA

- May use relative or absolute address

- Typically used to create an absolute address
from relative offsets in a general purpose
register

* LDS

- Load pointer using DS
« LES

Compare Instructions

« CMP (aka arithmetic compare)

Compares two numbers
= Performs a subtraction (SRC1 - SRC2)

Sets CF, OF, SF, ZF, AF, and PF flags

« TEST (aka logical compare)
- Compares two numbers

Sets SF, ZF, PF (also sets CF, OF to zero)

TEMP <« SRC1 AND SRC2;
SF «— MSB(TEMP);

IF TEMP =0

THEN ZF « 1;

ELSE ZF < O;

PF «— BitwiseXNOR(TEMP[0:7]);
CF « O;

OF « O;

Jump Instructions

= JMP

> Unconditional transfer of code execution

- May use relative or absolute address

Conditional Jump

Instructions

= Jcc
- cc is called the conditional code

- Conditional codes
= JE/JZ (jump equal/zero, ZF = 1)
= JNE/JNZ (jump not equal/not zero, ZF = Q)
= JECXZ (jump ECX zero, ECX = Q)

= JGE/JNL (jump greater, equal/not less, (SF xor OF)
— O)

- JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JLE,
JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,

Stack

* LIFO Memory Structure

x86: stack grows downward (high to low
addresses)

Local Variables
for Calling
Procedure

Parameters
Passed to
Called
Procedure

Frame Boundary

Stack Segment

Return Instruction
Pointer

Top of Stack

Bottom of Stack
(Initial ESP Value)

The Stack Can Be
16 or 32 Bits Wide

The EBP register is
typically set to point
to the return
instruction pointer.

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to

Lower Addresses

Higher Addresses

Stack Instructions

. PUSH

Decrement stack pointer, put operand at
ESP Stack

Before Pushing Doubleword After Pushing Doubleword
Stack ,
Growth 31 0 31

e [

Before Popping Doubleword After Popping Doubleword

Stack v
Growth 31 31 0

‘ - [EL—ESP
n-8 Doubleword Value -<—ESP

)

| Stack Instructions

« PUSHA
- Push all GP registers to the stack
= POPA
- Pop data from stack into all GP registers
« ENTER
- - Enter stack frame

push ebp; mov ebp, esp

LEAVE

Near Call and Return

Instructions

» Near Call/Return

- Intrasegment call/return

- Call or return to code in the same code
segment

« Far Call/Return
- Intersegment call/return

- Call or return to code not in the same
segment

Near Call and Return

Instructions
= Near Call (CALL)

- Pushes the current EIP (the return address)
- Loads the offset of the called procedure

= Near Return (denoted RET or RETN)

- Pops the return address into EIP

- If optional n argument, increment ESP by n
= For clearing out parameters

Far Call and Return

Instructions
= Far Call (CALL)

- Pushes the current CS (the return code
segment)

- Pushes the current EIP (the return address)
- Loads the CS, offset of the cal

« Far
- Po
- Po
~ If optional n argument, increment ESP by n

Return (denoted RET or
s the return address into E

0s the return code segment

ed procedure

RETF)

P

Calls and Returns

Stack

Frame
After \
Call

Stack During
Near Call

Stack

Frame

Param 1

Before
Call

Param 2

Param 3

-«— ESP Before Call

Calling EIP

-«€— ESP After Call

Stack

Stack During
Near Return

Frame

After
Call

-€— ESP After Return

Param 1

Param 2

Param 3

Calling EIP

-«—ESP Before Return

—

Note: On a near or far return, parameters are

released from the stack based on the
optional n operand in the RET n instruction.

Stack During
Far Call

Param 1

Param 2

Param 3

Calling CS

Calling EIP

Stack During
Far Return

Param 1

Param 2

Param 3

Calling CS

Calling EIP

-«— ESP Before Call

-«€— ESP After Call

-«—ESP After Return

-«—ESP Before Return

| Calls and Returns

#¥include <stdio.h>
#include <stdlib . h>

vold print_num(int, int, int):

vold main{int argc, char *argv[]) {
print_num{l, 2, 3);

N
iy

vold print_num(int 11, int 12, int 13) {
printf{"*“n, “n. “nn", 11,12, 13):
¥

dudialasig . A Reglsters (FPU)

A . L3 L3 09 L4 [LA LA L:

ot %1% 1% 1515151515

: : : AA432805A

EEEEFEES | B012FF 28

ARG 1 A AA12FF26

ananinas|l | - A012FF26

————— "—"—"'““——’—;—.—'—_‘:“._;-_‘T_——’—"————’——"— . B8a40a183E
9912FF28 aaBaaena 1 = 9@9999@1

gddress |He” duep _._.lF" ‘ @99%@92[2 - PPRERREZ

: .“ I] : N % 1% 1% 1% 1% 1% % K ‘ (5151515155 1% K

==y rC216228 ntdl L.7C218228

A6 FFFFFFFF

G rFFD9866

- CCCCCCCC

A l 1. 44| CCCCCCCC

v | BB12FF48| CCCCCCCE

Calls and Returns

B9 100868606
BS CCCCCCCC
. F3:RBE

care 4= 4

>

#¥include <stdio.h>
#include <stdlib . h>

vold print_num{int,

void main(int argc,
print_num(l, 2,
h

vold print_num(int 1
printf{"¥“n, “n.
b

PUSH_EBP

MOU EEP,ESP

SUB ESP, 40

PUSH EBX

PUSH ESI

PUSH_EDI

LEA EOI,DWORD PTR SS:[EBP-48
MOU ECX, 18

MOU EAX,CCCCCCCT

REP STOS DWORD PTR ES:[EDI]

PPNV X TN Crerar . 4

int, int):

char %*argv[]) {

1, int 12, int 13)
Znsn", 11,12, 13);

Registers (FPU)

v

Address |Hex dump

IF/\ =

001 2FF24

| String Operation

Instructions

= INS, OUTS
- Input/output string from/to a port

- MOVS, MOVSB, MOVSW, MOVSD

- Moves data from one string to another

- LODS, LODSB, LODSW, LODSD

- - Loads data into a string (DS:[(E)SI] to (E)
AX)

= STOS, STOSB, STOSW, STOSD

String Operation

Instructions
- CMPS, CMPSB, CMPSW, CMPSD

- Compares strings in memory

= SCAS, SCASB, SCASW, SCASD

- Compare a string (aka scan string)

Repeat String Operation

Instructions

 REP, REPE, REPZ, REPNE, REPNZ

- Repeats using the ECX register

» REPxx
= Where xx is a string operation instruction

Interrupt Instructions

= INT

- Generate a software interrupt
- INT 3h
= Debugger breakpoint
= Instruction hex value: \x CC or \xCD\x03

- INT 80h
= Unix system call

 RETI

Questions/Comments?

Some [A-32 Pictures from:
http://www.intel.com/products/processor/manuals/

