
CODEBREAKER CHALLENGE 3.0

Fall 2015

1

Challenge Scenario

NSA has discovered that the leadership of a
terrorist organization is using a new method of

communicating secret messages to its
operatives in the field and has provided each

individual with a unique program for decoding
messages. Your mission is to reverse-engineer

this software and develop capabilities to exploit
the secret messaging component.

2

The Challenge

 There are 4 different levels or "tasks" to this
challenge problem

 Task 1: Determine how to execute the hidden
functionality

 Task 2: Bypass an authentication check

 Task 3: Create an encoder program

 Task 4: Spoof a message to a high-value target

 Each task gets progressively harder and
builds off previous ones

3

The Challenge (cont.)

 Challenge materials and instructions can be
found at https://codebreaker.ltsnet.net

 Register for an account with your .edu email
address

4

https://codebreaker.ltsnet.net/

Reverse Engineering Tips

 Examine strings in the binary using IDA
 Look for clues that relate to the functionality you are trying

to find / reverse
 Utilize IDA xrefs to find code that references the string(s) of

interest
 Utilize symbols (e.g., function names) to help determine

what a section of code does

 Try setting debugger breakpoints to help RE code
 Single-step after hitting a breakpoint and see how the

values in registers/memory change
 Look for the result of interesting computations. You can

sometimes get the data you need from memory

 Leverage online resources, e.g.,Intel manuals, RE
lectures, etc. for help on reverse-engineering

5

Technical Walkthrough

 2014 Codebreaker Challenge on Windows
using IDA Pro Demo

 This binary can be downloaded from
https://codebreaker.ltsnet.net/resources

6

https://codebreaker.ltsnet.net/resources

Running the program

7

Running the program (2)

8

Disassemble

 Disassemble the Codebreaker2 binary

 If asked whether you want to use Proximity View

 Click no

 Use graph view

9

Disassemble (2)

10

Disassemble (3)

11

Observe Strings

 Observe the strings that show up in IDA

 Click Views->Open Subviews->Strings

 You should see the strings that are displayed when
you run the program

Yahoo! Weather forecast for

Full forecast available at:

Weatherman version 6.8.1

12

Observe Strings (2)

13

Observe Strings (3)

14

Observe Strings (4)

15

C:\\tmp\\secrets

 Double click on the “C:\\tmp\\secrets” string

 This takes you to the data section of the binary
where the string is stored

 To the right of the string are cross references
to this address (show up as DATA XREF in
IDA)

 Press ctrl-x to pull up a cross-references
window; you will see two different references

16

C:\\tmp\\secrets (2)

17

C:\\tmp\\secrets (3)

18

Double-click Reference

 You should now be looking at disassembled
x86 code

 We just leveraged the fact that in order to use
“C:\\tmp\\secrets” in the program, the code had to
reference the address in the data section of the
program where the string was stored.

 Using xrefs in IDA is a quick and easy way to
find interesting code sections

19

Double-click Reference (2)

20

Explore Code Block

21

Explore Code Block (2)

22

Explore Code Block (3)

23

Running the program (for real)

24

Explore Code Block (4)

25

Explore Code Block (5)

26

Running the program (for real)(2)

27

Tier 1 Complete!

 Pretty straight forward

 Just looking at the strings may have been
enough to get you through this

 … on to Tier 2!

28

Running the program (for real)(2)

29

Explore Code Block (6)

30

Explore Code Block (7)

31

Explore Code Block (8)

32

Explore Code Block (9)

33

getPasswordFromUsername

34

What does this code do?

mov edx, 0xAC769185 // edx = 0xAC769185

mov eax, ecx // ecx = input value

imul edx // edx:eax = eax * edx

lea eax, [edx + ecx*0x1] // eax = edx + ecx

mov edx, eax // edx = eax

sar edx, 0x6 // arith right shift; edx = edx >> 0x6

mov eax, ecx // eax = ecx

sar eax, 0x1f // eax = eax >> 0x1f (31)

mov ebx, edx // ebx = edx

sub ebx, eax // ebx = ebx - eax

mov eax, ebx // eax = ebx

imul eax, eax, 0x5f // edx:eax = eax * 0x5f (95)

mov edx, ecx // edx = ecx

sub edx, eax // edx = edx – eax

 // edx is the final result

 35

Signed Division and Remainder

 The code computes: edx = ecx % 95

 Why multiply by 0xAC769185 and where did that
number come from?
 Division is a time consuming operation

 When the divisor is a constant, the compiler can
optimize the computation

 The basic trick is to multiply by a “magic value”
(~ 232/d) and extract the leftmost 32 bits of the
product

 The following site computes these numbers for
you: http://www.hackersdelight.org/magic.htm

36

http://www.hackersdelight.org/magic.htm

getPasswordFromUsername (2)

37

38

Running the program (3)

Running the program (4)

39

Tier 2 Complete!

 Required either reverse engineering the
password derivation function or just using a
debugger to see the computed value

 … on to Tier 3!

40

Running the program (4)

41

Running the program (5)

42

Running the program (6)

43

Explore Code Block (10)

44

Inside encrypt (1)

45

Inside encrypt (2)

46

SHA256 Functions

47

Inside encrypt (3)

48

Initial computation

49

Subsequent computations

50

So…

 byte buffer[] = SHA256(secret key)

 byte result[0-7] = (A * buffer[0-7]) + C

 byte result[8-15] = (A * result[0-7]) + C

 byte result[16-23] = (A * result[8-15]) + C

 … and same for the derived password

 From now on we will refer to:
 ‘result’ from secret key as X

 ‘result’ from derived password as Y

51

Inside encrypt (4)

52

Inside encrypt (5)

53

What’s happening

54

Tier 3 Solution

 Write a program to:
 Compute the password given a username*
 Base64 decode the string**
 Run the encryption algorithm in reverse to decrypt a

given input
 plaintext[i] = ciphertext[i] ^ (X[i] ^ Y[i])
 where you compute X and Y from the given secret key

and derived password

*Or just get it by running the Codebreaker binary in a
debugger
** Or do it online, use existing programs, etc.

55

Tier 3 Solution (2)

56

… on to Tier 4!

Tier 4 Solution

 You’d get the following message via email:

To:Tier3_Codebreakers

Msg:z/W4uhaRU+8N7/qKSzuwXfNPZ8Tf867ajNJ33tU85wTtgXywSTefsB86
3g26B5rR2Q9/oqFztnrT6nTUq8JMuJbWTUD5YIsN7uTbw6F9/GzsgdBG567
A303kSOTEM+Fsp7QialTheU9/W/02jiGZUeW6yYdhaMrDP6vDJlq+MNRMX
Zg8ereNKyBQDvGPR4iHUNBH0CP2oSb+/9WkeupRs2mkkoBAo8rdirZu0J
NOwnugF9T/Kw0R9EHVxNneIdDiG0m8O2UilAUaR6pKHTu1xS6MfkVh5C
KArmVTY6MAC6Vi8CnZJvM/WZT6cg6dLesgFrtXX8uwhzcTYwLe+t2m5Mv
vDtiZy0t9pLdBNAr6N3+znHCDInAIGlJe3shipbBQoqKxbb8VNY9DR4fJMG9
YIhnMyYn1g+mLGC41niWUqTbbBrnwSJgZ+u5AwLcpHXkA649O4IoHEyV+
bgWL/bKFVWL7KDAzEx4FdhwnYfe25SHirjFxVTrNiyR/FPPa/MgfixkrlVrZkY
GsZNlvDZjG8sxrH9tQ0kkOO7yaplHsBaYiwqCGVKum55iRyKgG1q2RuDAY
yzs1uvA2JnHnBZW1gEOpyy6RPiPuV7/z5DyQiMYhEzDA1Y9Dne92BagY0a
FTsCNMRX+W+L1XepcN49BEUDEMUKuUnLT6G+QuLw==

57

Tier 4 Solution (2)

 Maybe there’s a problem with the encryption
scheme…

58

Tier 4 Solution (3)

 plaintext[i] = ciphertext[i] ^ (X[i] ^ Y[i])

 byte buffer[] = SHA256(secret key)
 byte X[0-7] = (A * buffer[0-7]) + C
 byte X[8-15] = (A * X[0-7]) + C
 …

 byte buffer[] = SHA256(derived password)
 byte Y[0-7] = (A * buffer[0-7]) + C
 …

 We have the ciphertext, and the constants

 59

Tier 4 Solution (4)

 plaintext[0-7] = ciphertext[0-7] ^ (X[0-7] ^ Y[0-7])

 byte buffer[] = SHA256(secret key)

 byte X[0-7] = (A * buffer[0-7]) + C

 byte X[8-15] = (A * X[0-7]) + C

 …

 byte buffer[] = SHA256(derived password)

 byte Y[0-7] = (A * buffer[0-7]) + C

 …

 All messages include the username too, from which we can
derive the password, and then the SHA256 hash

60

Tier 4 Solution (4)

 plaintext[0-7] = ciphertext[0-7] ^ (X[0-7] ^ Y[0-7])

 byte buffer[] = SHA256(secret key)

 byte X[0-7] = (A * buffer[0-7]) + C

 byte X[8-15] = (A * X[0-7]) + C

 …

 byte buffer[] = SHA256(derived password)

 byte Y[0-7] = (A * buffer[0-7]) + C

 …

 We know the plaintext at the beginning too, since the
program always adds ‘---MESSAGE BEGIN---’

61

Tier 4 Solution (5)

 plaintext[0-7] = ciphertext[0-7] ^ (X[0-7] ^ Y[0-7])

 byte buffer[] = SHA256(secret key)

 byte X[0-7] = (A * buffer[0-7]) + C

 byte X[8-15] = (A * X[0-7]) + C

 …

 byte buffer[] = SHA256(derived password)

 byte Y[0-7] = (A * buffer[0-7]) + C

 …

 Reversing the encryption equation, we get:

 X[0-7] = plaintext[0-7] ^ ciphertext[0-7] ^ Y[0-7]
62

Tier 4 Solution (6)

 plaintext[0-7] = ciphertext[0-7] ^ (X[0-7] ^ Y[0-7])

 byte buffer[] = SHA256(secret key)

 byte X[0-7] = (A * buffer[0-7]) + C

 byte X[8-15] = (A * X[0-7]) + C

 …

 byte buffer[] = SHA256(derived password)

 byte Y[0-7] = (A * buffer[0-7]) + C

 …

 X[8-15] and Y[8-15] (and on) are computed from the
SHA256 bytes, so we have the rest of those too. 

63

Tier 4 Solution (7)

 Decrypted message:

 Congratulations!! You have solved the final tier of
the Codebreaker Challenge! Please send us an
email at senior_project@nsa.gov and let us
know how you solved it. We hope you have
enjoyed working on this problem. If you are
interested in solving even more challenging and
exciting problems on a daily basis that directly
impact our national security posture and military
forces around the world, consider applying for a
career at NSA -- https://www.nsa.gov/careers.

64

Questions

?

65

… if this work interests you, consider applying for an internship or full-time
position at https://www.nsa.gov/careers

Use event code 483-1 to associate yourself with the Codebreaker Challenge

https://www.nsa.gov/careers

Extra Slides

66

64-bit Data Types

Consider the following program:

int main(){

 char one = 0x11; // sizeof(char) == 1

 char two = 0x22;

 int three = 0x33333333; // sizeof(int) == 4

 int four = 0x44444444;

 long long five = 0x5555555555555555; // sizeof(long long) == 8

 long long six = 0x6666666666666666;

 printf("8b: %hu 32b: %u 64b: %llu\n", one + two, three + four, five + six);

 return 0;

}

67

64-bit Data Types – x86_64

Part 1: Move values onto the stack

mov BYTE PTR [rbp-0x2],0x11

mov BYTE PTR [rbp-0x1],0x22

mov DWORD PTR [rbp-0xc],0x33333333

mov DWORD PTR [rbp-0x8],0x44444444

mov DWORD PTR [rbp-0x20],0x55555555

mov DWORD PTR [rbp-0x1c],0x55555555

mov DWORD PTR [rbp-0x18],0x66666666

mov DWORD PTR [rbp-0x14],0x66666666

68

64-bit Data Types – x86_64

Part 2: Load into registers and compute

mov rax,QWORD PTR [rbp-0x18] // 0x6666666666666666 in rax

mov rdx,QWORD PTR [rbp-0x20] // 0x7777777777777777 in rdx

lea rcx,[rdx+rax*1] // rcx = rax + rdx*1

mov eax,DWORD PTR [rbp-0x8] // 0x44444444 in eax

mov edx,DWORD PTR [rbp-0xc] // 0x33333333 in edx

add edx,eax // edx = edx + eax

movsx esi,BYTE PTR [rbp-0x2] // 0x11 in esi

movsx eax,BYTE PTR [rbp-0x1] // 0x22 in eax

add esi,eax // esi = esi + eax

69

64-bit Data Types – x86

No 64-bit registers 

long long five = 0x5555555555555555; // sizeof(long long) == 8

long long six = 0x6666666666666666;

Let’s make it work with 32-bit ones!

70

64-bit Data Types – x86

Part 1: Move values onto the stack (same as x86_64)

mov BYTE PTR [ebp-1],0x11

mov BYTE PTR [ebp-2],0x22

mov DWORD PTR [ebp-8],0x33333333

mov DWORD PTR [ebp-12],0x44444444

mov DWORD PTR [ebp-24],0x55555555

mov DWORD PTR [ebp-20],0x55555555

mov DWORD PTR [ebp-32],0x66666666

mov DWORD PTR [ebp-28],0x66666666

71

64-bit Data Types – x86

Part 2: Load into registers and compute

mov eax,DWORD PTR [ebp-32] // 0x66666666 in eax

mov edx,DWORD PTR [ebp-28] // 0x66666666 in edx

add eax,DWORD PTR [ebp-24] // eax = eax + 0x55555555

adc edx,DWORD PTR [ebp-20] // edx = edx + 0x55555555 + CF

…

mov eax,DWORD PTR [ebp-12] // 0x444444 in eax

add eax,DWORD PTR [ebp-8] // eax = eax + 0x33333333

…

movsx edx,BYTE PTR [ebp-1] // 0x11 in edx

movsx eax,BYTE PTR [ebp-2] // 0x22 in eax

lea eax,[edx+eax] // eax = edx + eax*

72

Strings?

 The strings that are used here don’t appear in
the list of strings

 … or do they? Scroll down in the code to try
and spot them.

73

Explore Code Block (10)

74

Explore Code Block (11)

75

Inside special_printf

76

Inside special_printf (2)

77

Mystery solved!

78

