
CODEBREAKER CHALLENGE 4

Fall 2016

1

Challenge Scenario

▪ Terrorists have recently developed a new type of
remotely controlled Improvised Explosive Device
(IED), making it harder for the U.S. Armed Forces
to detect and ultimately prevent roadside bomb
attacks against troops deployed overseas.

▪ Your task is to develop the capability to disarm
the IEDs remotely and permanently render them
inoperable without the risk of civilian casualties.

2

The Challenge

▪ There are six different levels to this challenge:

 Task 1: Compute hash and identify IED ports

 Task 2: Refine IED network traffic signature

 Task 3: Decrypt IED key file

 Task 4: Disarm the IED with the key

 Task 5: Disarm an IED without a key

 Task 6: Permanently disable any IED

3

The Challenge (cont.)

▪ Challenge materials and instructions can be
found at https://codebreaker.ltsnet.net

▪ Register for an account with your .edu email
address

4

https://codebreaker.ltsnet.net/

Reverse Engineering Tips

▪ Examine strings in the binary using IDA
 Look for clues that relate to the functionality you are trying

to find / reverse
 Utilize IDA xrefs to find code that references the string(s) of

interest
 Utilize symbols (e.g., function names) to help determine

what a section of code does

▪ Try setting debugger breakpoints to help RE code
 Single-step after hitting a breakpoint and see how the

values in registers/memory change
 Look for the result of interesting computations. You can

sometimes get the data you need from memory

▪ Leverage online resources, e.g.,Intel manuals, RE
lectures, etc. for help on reverse-engineering

5

Network Traffic Analysis

▪ Great tools available – packet analysis:

 Wireshark: cross platform, parsers for many protocols

 Microsoft Message Analyzer: Great features for active

capturing on Windows

▪ Available features/functionality:

 Display filters to focus in on traffic

 TCP stream following

 Extract files from packet payloads

 Dissecting custom protocols (Lua script interface)

 Traffic statistics/characterization 6

Technical Walkthrough

▪ 2015 Codebreaker Challenge on Windows
using IDA Pro Demo

▪ This binary can be downloaded from
https://codebreaker.ltsnet.net/resources

7

https://codebreaker.ltsnet.net/resources

2015 Backstory

▪ NSA has discovered that the leadership of a
terrorist organization is using a new method of
communicating secret messages to its
operatives in the field

▪ Intelligence suggests that each member is
provided a program that can be used to read the
messages, and that a customized cryptographic
implementation is used to generate a
public/private key pair, which is then used to
authenticate messages from leadership

8

2015 Backstory (2)

▪ A copy of the program belonging to a high-
ranking operative has been recovered ...

▪ Your mission is to reverse-engineer this
software and develop capabilities to exploit
the secret messaging component

9

▪ Four different levels or "tasks" to this
challenge problem

 Task 1: Execute program hidden functionality

 Task 2: Bypass an authentication check

 Task 3: Create an encoder program

 Task 4: Spoof a message to a high-value target

10

2015 Challenge

▪ We need your help with decoding a message
that we've captured … trigger the hidden
functionality and decode the secret message

▪ Provided:

 tier1_key.pem

 tier1_msg.txt

 codebreaker3.exe

11

2015 Challenge – Task 1

12

tier1_key.pem

13

tier1_msg.txt

…

Running the program

14

Running the program (2)

15

Disassemble

▪ Disassemble the Codebreaker3 binary

16

Disassemble (2)

17

Observe Strings

▪ Observe the strings that show up in IDA

 Click Views->Open Subviews->Strings

 You should see the strings that are displayed when
you run the program

--symbol <symbol> : The ticker symbol to reference

--action <action> :

--symbol and --action are required arguments

Stock information powered by Yahoo!

18

Observe Strings (2)

19

Observe Strings (3)

20

Observe Strings (4)

21

Running the program (3)

22

Observe Strings (4)

23

Failed Binary Name Check

24

Failed Binary Name Check (2)

25

Double-click Reference

▪ You should now be looking at disassembled
x86 code

 We just leveraged the fact that in order to use
“Failed binary name check” in the program, the
code had to reference the address in the data
section of the program where the string was
stored.

▪ Using xrefs in IDA is a quick and easy way to
find interesting code sections

26

Double-click Reference (2)

27

loc_51B9A6: ; CODE XREF: _main+1D2j

loc_51B9A6: ; _main+29Aj

mov dword ptr [esp], offset "Failed binary name check"

call _puts

mov dword ptr [esp], 1

call _exit

Double-click Reference (3)

28

mov dword ptr [esp+8], 15h
mov [esp+4], edi
mov dword ptr [esp], offset "secret-messenger.exe"

call _memcmp
test eax, eax
jnz short loc_51B9A6 ; Previous code block

So, in C:

if(0 != memcmp(<edi>, “secret-messenger.exe”, 21)) {

puts(“Failed binary name check”); exit(1); }

Double-click Reference (4)

29

; int main(int argc, const char **argv, const char **envp)
...
mov ebx, [ebp+argv]
...
mov eax, [ebx]
mov [esp], eax ; path
call _basename
mov [esp], eax ; char *
mov edi, eax

argv holds the program arguments. For our invocation, argv will be:

[‘C:\challenge\codebreaker3.exe’, ‘--decoder’]

So, here, edi is a pointer to “codebreaker3.exe”

Double-click Reference (5)

30

So, in C:

if(0 != memcmp(basename(argv[0]), “secret-messenger.exe”, 21)) {

puts(“Failed binary name check”); exit(1); }

Running the program (4)

31

Running the program (5)

32

Task 1 Complete!

▪ Fairly straight forward

▪ Just looking at the strings may have been
enough to get you through this

 --decoder : Enter secret messaging mode

 secret-messenger.exe

▪ … on to Task 2!

33

▪ Through SIGINT we have collected a new
message file - this one appears to have been
sent to a field operative … We believe that
this message may contain actionable
intelligence, so please report back with the
message contents as soon as possible

▪ Provided:
 tier2_key.pem

 tier2_msg.txt

34

2015 Challenge – Task 2

Running the program (6)

35

Invalid (Failed check 4)

36

loc_401ED3: ; CODE XREF: _tier2+1E6j

mov dword ptr [esp], offset "Invalid (failed check 4)"

call _puts

mov dword ptr [esp], 1

call _exit

On to _tier2

37

Starting near where we left off, main calls _tier2:

mov edx, [esp+20h] ; key file path
mov eax, [esp+1Ch] ; text file path
call _tier2

Inside _tier2

38

Inside _tier2 (2)

39

Inside _tier2 (3)

40

Inside _tier2 (4)

41

Inside _tier2 (5)

42

Inside _tier2 (6)

43

44

Tabs and Spaces

…

45

Tabs and Spaces – Revealed!

…

Inside _tier2 (7)

46

Inside _tier2 (8)

47

Inside _tier2 - Fail cases

48

loc_401FO3:

mov dword ptr [esp], offset "Invalid (failed check 1)"

call _puts

mov dword ptr [esp], 1

call _exit

loc_401F7B:

mov dword ptr [esp], offset "Invalid (failed check 2)"

call _puts

mov dword ptr [esp], 1

call _exit

loc_401F63:

mov dword ptr [esp], offset "Invalid (failed check 3)"

call _puts

mov dword ptr [esp], 1

call _exit

Inside _tier2 (9)

49

Inside _tier2 (10)

50

From the Task 2 backstory

▪ “Through SIGINT we have collected a new
message file - this one appears to have been
sent to a field operative”

▪ The first message didn’t have this problem…

▪ Messages must have an ID associating them
to a given operative.

51

We have the binary...

▪ So bypass the check dynamically!

▪ Set a breakpoint at the comparison in IDA
 Click the circle to the left of that line of code

▪ Prepare the debugger
 Debugger -> Set Debugger (Local Win32 debugger)

 Debugger -> Process Options...

 Specify the program parameters for Task 2 from earlier

 Start Process...

52

At the breakpoint

53

The result:

54

Task 2 Complete!

▪ Required either bypassing the check as we
demonstrated, or modifying the binary /
message

▪ … on to Task 3!

55

▪ The copy of the program you have is only
capable of decoding secret messages and lacks
the ability to encode new messages to other
operatives. We need this capability in order to
infiltrate the terrorist network and send encoded
messages…

▪ Provided:
 A message to encode

 A text file to encode the message into

 A public/private key pair

56

2015 Challenge – Task 3

Recap – What we know so far

57

▪ Messages are encoded using tabs and spaces

▪ Once decoded, they have certain properties:

 data[] size > 6

 data[0] == 'M‘

 data[3-4] <= data size

 data[5-6] == 0x3A2B

▪ So, message must take the form:
 ‘M’ | ???? ???? | length ? | 0x3A 0X2B | ????????

Inside _tier2 (11)

58

Inside _tier2 (12)

59

Inside _tier2 (13)

60

Inside _tier2 (14)

61

SHA224_Update

62

SHA224_Update(

SHA224_CTX *context,

const uint8_t *data,

size_t len);

SHA224_Update(

CTX_obj,

pointer to data[7],

data[3-4]);

Piecing together the clues

63

▪ data[3-4] length of data starting at
data[7] (that gets hashed)

▪ data[1-2] length of the remaining data

▪ data size == data[3-4] + data[1-2] + 7

▪ data after data1 is base64 decoded

‘M’ | len data2 | len data1 | 0x3A2B | data1 | data2

data1 = ???

data2 = b64(???)

Inside _tier2 (15)

64

Inside _tier2 (16)

65

RSA_verify

66

So,

‘M’ | len data2 | len data1 | 0x3A2B | data1 | data2

data1 = ???

data2 = b64(RSA_sign (SHA224 (data1)))

RSA_verify(

int type,

unsigned char *hash,

unsigned int hash_len,

unsigned char *sigbuf,

unsigned int siglen,

RSA *rsa);

RSA_verify(

0x2A3,

sha224_hash,

0x1c,

b64_decoded_data,

0x80,

RSA_PUBKEY_obj);

Inside _tier2 (17)

67

Inside _tier2 (18)

68

We can now craft messages!

69

‘M’ | len data2 | len data1 | 0x3A2B | data1 | data2

data1 = message text

data2 = b64(RSA_sign (SHA224 (data1)))

▪ Compute hash of the message text

▪ Compute RSA signature of message text hash
using provided RSA private key

▪ Base64 encode the RSA signature

▪ Calculate lengths

▪ Build header

▪ Encode in tabs and spaces

Task 3 Complete!

▪ Required reverse engineering the algorithm
and writing a complimentary solution

▪ … on to Task 4!

70

▪ A military organization wants to make the messages appear
to come from the group's leadership. … Program binaries
and keys have already been distributed throughout the
terrorist organization, though, so achieving this effect must
be done only via the message file.

▪ Craft a message that can be sent to the same high-ranking
member that the message from Task 1 was originally sent to

▪ Provided:
 A message to encode
 A text file to encode the message into

71

2015 Challenge – Task 4

72

The problem... No private key 

M | len data2 | len data1 | 0x3A 0x2B | data1 | data2

data1 = message text

data2 = b64(RSA_sign (SHA224(data1)))

▪ We have the person’s public key, but computing the
RSA signature requires the private key

▪ Maybe there is a flaw we can exploit?

A further look ...

73

A further look ... (2)

74

A problem

75

esi = 0x88 bytes of malloc'd mem

if RSA_verify returns <= 0:

[esi+0x84] = 0

else:

[esi+0x84] = 0x237EEAD6

memcpy([esi+4], sig, siglen)

if [esi+0x84] == 0x237EEAD6:

// signature is valid

Both are set by
Base64Decode, based
on ‘data2’ and ‘len
data2’

‘M’ | len data2 | len data1 | 0x3A2B | data1 | data2

A problem

76

esi = 0x88 bytes of malloc'd mem

if RSA_verify returns <= 0:

[esi+0x84] = 0

else:

[esi+0x84] = 0x237EEAD6

memcpy([esi+4], sig, siglen)

if [esi+0x84] == 0x237EEAD6:

// signature is valid

If siglen is greater than 0x80, the
memcpy will overwrite the
signature verification value
with data from sig

To exploit, craft data2 such that
base64 decodes into a buffer
with 0x237EEAD6 at byte
0x80

‘M’ | len data2 | len data1 | 0x3A2B | data1 | data2

An alternate solution...

77

▪ Recall:
 Intelligence suggests ... a customized cryptographic

implementation is used to generate a public/private key
pair, which is then used to authenticate messages from
leadership

▪ Maybe there’s a problem with the keys...

With your powers combined

78

▪ Task 1: public key for high-ranking member
▪ Task 2: public key for field operative

▪ From Wikipedia, regarding attacks on the RSA
cryptosystem:

If n = pq is one public key and n′ = p′q′ is
another, then if by chance p = p′ … then a
simple computation of gcd(n,n′) = p factors both
n and n′, totally compromising both keys.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Security_and_practical_considerations

The keys share a common
factor ☺

79

▪ Computing the GCD on both keys reveals the
private key to both

▪ This can be used to sign a message to either
recipient

▪ Idea for this attack:
 2012 research paper from U of Mich:

We were able to remotely obtain the RSA private keys for
0.50% of TLS hosts and 0.03% of SSH hosts because their
public keys shared nontrivial common factors due to poor
randomness.

factorable.net

Task 4 Complete!

▪ Required:

 Exploiting the four-byte buffer overflow vuln, or

 Computing the GCD of the provided public keys

80

Questions

?

81

… if this work interests you, consider applying for an internship or full-time
position at https://www.intelligencecareers.gov/NSA

Check the site for an event code to use when applying (to associate yourself
with the Codebreaker Challenge)

https://www.intelligencecareers.gov/NSA

