
CODEBREAKER CHALLENGE 5

Fall 2017

1

Challenge Scenario

▪ The Department of Homeland Security has
requested NSA’s assistance in investigating a
potential intrusion into U.S. critical infrastructure

▪ Investigate the intrusion, identify how the
systems were compromised, and develop a
capability that neutralizes the threat

▪ With your help we can secure this system and
prevent further attacks on other critical networks

2Note: This is a fictitious story meant for providing realistic context!

The Challenge

▪ Divided into several tasks:

 T0: Setup a test instance of the system

 T1: Analyze suspicious network traffic

 T2: Develop a network signature for an IDS

 T3/T4: Analyze system components for
vulnerabilities

 T5: Perform forensic analysis of a compromised
endpoint

 T6: Craft an exploit to takedown the C&C server
and devise a strategy to clean the infected hosts

3

The Challenge (cont.)

▪ Challenge materials and instructions can be
found at https://codebreaker.ltsnet.net

▪ Register for an account with your .edu email
address

4

https://codebreaker.ltsnet.net/

*** CAUTION ***

▪ The “agent” program contains a serious
vulnerability

▪ By default, the agent attempts to connect to
an MQTT broker listening on localhost – this
is SAFE

▪ But it is possible to connect to an MQTT
broker on a public IP – DO NOT DO THIS!!

 Anyone else connected to the broker could
potentially take control of your machine

5

Network Traffic Analysis

▪ Great tools available – packet analysis:

 Wireshark: cross platform, parsers for many protocols

 Microsoft Message Analyzer: Great features for active

capturing on Windows

▪ Available features/functionality:

 Display filters to focus in on traffic

 TCP stream following

 Extract files from packet payloads

 Dissecting custom protocols (Lua script interface)

 Traffic statistics/characterization 6

Reverse Engineering Tips

▪ Examine strings in the binary using IDA
 Look for clues that relate to the functionality you are trying

to find / reverse
 Utilize IDA xrefs to find code that references the string(s) of

interest
 Utilize symbols (e.g., function names) to help determine

what a section of code does

▪ Try setting debugger breakpoints to help RE code
 Single-step after hitting a breakpoint and see how the

values in registers/memory change
 Look for the result of interesting computations. You can

sometimes get the data you need from memory

▪ Leverage online resources, e.g.,Intel manuals, RE
lectures, etc. for help on reverse-engineering

7

Memory Forensics

▪ Many tools exist – Volatility, Rekall, etc.

▪ We have provided a Volatility profile to help
with Task 5

▪ With Volatility, you can:

 List and analyze processes on the system

 Find files in memory

 Search for patterns

 Examine network information

 ...and much more!

8

Technical Walkthrough

▪ 2016 Codebreaker Challenge on Windows
using IDA Pro Demo

▪ This binary can be downloaded from
https://codebreaker.ltsnet.net/resources

9

https://codebreaker.ltsnet.net/resources

2016 Backstory

▪ Terrorists have recently developed a new type of
remotely controlled Improvised Explosive Device
(IED), making it harder for the U.S. Armed Forces
to detect and ultimately prevent roadside bomb
attacks against troops deployed overseas.

▪ Your task is to develop the capability to disarm
the IEDs remotely and permanently render them
inoperable without the risk of civilian casualties.

10

▪ There are six different levels to this challenge:

 Task 1: Compute hash and identify IED ports

 Task 2: Refine IED network traffic signature

 Task 3: Decrypt IED key file

 Task 4: Disarm the IED with the key

 Task 5: Disarm an IED without a key

 Task 6: Permanently disable any IED

11

2016 Challenge

▪ A military organization captured a laptop of a
known explosives expert containing the
debug version of an IED client program.

▪ Compute the SHA256 hash and identify the
source and destination TCP ports used when
connecting to an IED.

▪ Provided:

 Client binary (Windows and Linux)
12

2016 Challenge – Task 1

Running the program

13

Running the program (2)

14

Running the program (3)

15

Computing the SHA256 Hash

▪ So many ways!

16

Task 1 Complete!

▪ Overall, pretty basic

▪ Hash and src port different per student

▪ 954 of 3325 students solved (28.7%)

▪ … on to Task 2!

17

▪ Based on the signatures you provided, we
collected network communications from an
IED that is about to be detonated

▪ Identify the version string sent by the client
software to the IED and determine the IP
address of the undetonated IED

▪ Provided:
 traffic.pcap

18

2016 Challenge – Task 2

19

Wireshark!

▪ Client connects from port 27704 to port 8080

▪ We want to see client to IED comms
(unidirectional)

▪ Wireshark Display Filter:
▪ tcp.dstport == 8080

20

What we know so far

▪ We want to see packets with data

 No SYN packets, SYN/ACK packets, empty ACKs

▪ Wireshark Display Filter:

▪ tcp.dstport == 8080 && tcp.len > 0

21

Refining Further

22

Wireshark! (2)

▪ Some port 8080 traffic that isn’t HTTP…

▪ Wireshark Display Filter:

▪ tcp.dstport == 8080 && tcp.len > 0 && !http

23

Refining Further (2)

24

Wireshark! (3)

Task 2 Complete!

▪ Leverage Wireshark display filters

▪ Version string and IPs different per-student

▪ 751 of 3325 students solved (22.6%)

▪ … on to Task 3!

25

▪ Geolocated the device and discovered it was
a test system (used by the IED developers)

▪ Retrieved files, including a key file that
appears to be encrypted… Need to decrypt it!

▪ Provided:

 Server binary

 Dummy driver

 Key File
26

2016 Challenge – Task 3

Running the server

27

Running the client

28

▪ Server appears to load “OTP key” from
encrypted key file…

▪ Sounds liker server.exe decrypts the key file,
and decryption requires a key…

29

What we know so far

IDA Pro Demo!

30

Observe Strings

31

Observe Strings (2)

32

Observe Strings (3)

33

Decrypt the Key

34

▪ Extract the key and replace \n characters
 strings server | grep -A26 -- "-----
BEGIN RSA PRIVATE KEY-----“ > rsa.key

▪ Decrypt the key file manually
 openssl rsautl -in 784633464.key.enc -
inkey rsa.key -decrypt

▪ Decrypted Key File Contents:

otpauth://totp/784633464?secret=L45VPYQW3R
6DNOFEZQLFP74GYRUFMI3KJVV5CY5KDUDVHMK6662Q

Task 3 Complete!

▪ Recovering the key (static / dynamic analysis)

▪ Key file contents different per student

▪ 492 of 3325 students solved (14.8%)

▪ … on to Task 4!

35

▪ Commands to the IED are authenticated by
one-time passwords (OTP) based on the key
and the current time

▪ Generate a valid OTP value using the key file
from Task 3 so we can use it to disarm the
corresponding IED

▪ Nothing New Provided

36

2016 Challenge – Task 4

Server / Client Interactions

37

38

Google for ‘otpauth://totp/’

39

https://daplie.github.io/browser-authenticator/

▪ Standard protocol, so libraries exist
 Authenticator.generateToken("L45VPYQW3R6DNOFEZQLFP74

GYRUFMI3KJVV5CY5KDUDVHMK6662Q").then(function
(formattedToken) { alert(formattedToken); });

▪ The server binary verifies the solutions, so
leverage that

 Run the server binary with an interactive
debugger, set a breakpoint at the value
comparison, now you have that value.

40

Generating a valid TOTP code

41

Successful Disarm

Task 4 Complete!

▪ A few ways to solve:

 Find an open-source TOTP library and write code

 Use server binary built-in functionality

▪ 379 of 3325 students solved (11.4%)

▪ … on to Task 5!

42

▪ After disarming the IED, forensic analysts
recovered a key generator program used to
produce device-specific keys

▪ Find a weakness in how these keys are
generated so we can remotely disarm any IED

▪ Provided:

 keygen binary (Windows and Linux)

 Serial Numbers from 2 IEDs that we need to disarm
43

2016 Challenge – Task 5

▪ Simple binary, but not trivial to RE

 Symbol information has been stripped out

 OpenSSL statically linked, IDA may not pick up all
symbol names

▪ Some help text:
 Usage: keygen [-g OR -m master_key_file] -k serial

-o master_output_file

44

Reverse Engineering keygen

▪ Invoking with -g -k 784633464 -o master.key

 Creates a file called 784633464.key, containing:

otpauth://totp/784633464?secret=GEUPDZPS6A3AC
UZKD7KLW3W6GUB4AB3LXHXX6ZDW62MPQWEL
O4VA

 Creates a 256-bit master.key file

▪ Invoking with -m master.key –k 784633464
recreates 7846eef64.key

45

Reverse Engineering keygen (2)

▪ So, the <serial number>.key file is generated
from the master key file

▪ With the two IED serial numbers provided, we
could generate key files if we knew what the
terrorists’ Master Key was

▪ How is master.key generated?

46

Reverse Engineering keygen (3)

47

master.key Generation

▪ Seeds the random number generator:
0x80494c3: push 0x0
0x80494c5: call 0x8048e40 <time@plt>
0x80494ca: mov DWORD PTR [esp],eax
0x80494cd: call 0x8048fb0 <srand@plt>

▪ Fills a 256-bit buffer with bytes from rand

▪ Computes the SHA256 hash of the buffer, fills
buffer with the result, and repeats 1024 times

48

The Problem

▪ All randomness determined by the time() call!

▪ If we can guess the time that master.key was
created we can reproduce it

▪ Brute force time!

 Work backwards, one second at a time, and try to
reproduce the key file from Task 3

49

A Few Methods for Solving

▪ Instrument the binary to hook the time
function (use LD_PRELOAD on Linux)

 One student found that there is a library which
hooks just the time function! libfaketime

▪ Write your own code that replicates the
computation (replacing time() with a number)

 Requires REing more of the algorithm, though.
Specifically, how <serial>.key is produced

50

import base64, struct, hashlib, tempfile, urlparse, hmac, ctypes
from ctypes.util import find_library
libc = ctypes.CDLL(find_library('c'))
rand = libc.rand
srand = libc.srand

serial = 784633464
key = 'L45VPYQW3R6DNOFEZQLFP74GYRUFMI3KJVV5CY5KDUDVHMK6662Q'

def generate_masterkey(seed):
srand(seed)
key = ''
for i in xrange(8):

key += struct.pack('<I', rand())
for i in xrange(1024):

m = hashlib.sha256()
m.update(key)
key = m.digest()

return key

def create_subkey(mkey, serial):
h = hmac.new(mkey, struct.pack('<I', serial), hashlib.sha256)
return h.digest()

i = 1473289200 # Count down from the beginning of the challenge, Sept. 8
while i > 0:

master = generate_masterkey(seed=i)
if(key == base64.b32encode(create_subkey(master, serial))[:-4]):

print "Discovered time! %d" % i
break

i -= 1

Task 5 Complete!

▪ Key Creation Date: Sep 4 12:19:10 EDT 2016

▪ The time is not a good seed for your PRNG!

 Brute force-able in reasonable time

▪ 119 of 3325 students solved (3.6%)

▪ … on to Task 6!

51

▪ Recovered the hardware driver that contains
logic for arming/triggering the IED hardware

▪ Discovered that causing the hardware to be
triggered without being armed will brick it

▪ Find a way to trigger-before-arm the IED!

▪ Provided:

 Real Hardware Driver

 IED Hardware Simulator

52

2016 Challenge – Task 6

53

New Components - hwsim

54

New Components – real libdriver

55

Old Component – client

56

Why not just use the client?

▪ Why not just ‘trigger’ without ‘arm’?

 Fails 

▪ Prevented by the driver

57

Will the real libdriver, please …

▪ Analyzing libdriver is the key to this task

 No symbols, stripped of function names

 Very few helpful strings, constants, etc..

 Compiled with anti-RE techniques / libraries

▪ Also, requires investigating the interactions
with other tools

 The exploit must travel through the client, to the
server, and then result in changes in libdriver

58

Analyze the original libdriver

▪ Original libdriver is not as obfuscated, and the
following can be discerned:

 server passes commands to the driver through the
driver_ioctl call

 Each command passed with an ID, as follows:

 Disarm: 0xB434401

 Arm: 0xB434402

 Trigger: 0xB434403

 State: 0xB434404

 Serial: 0xB434405

59

Find similar logic in real libdriver

▪ What is this data?

60

Anti-SRE: Disassembler Confusion

▪ A strange function – modifies the return address
directly to skip “valid” instructions

▪ Confuses the disassembler

61

Fixing up the disassembly

▪ Undefine incorrect disassembly/data, skip bytes,
disassemble as code

62

One more instance of this:

▪ Uses function pointer, so harder to trace (but this
function exists right above the other one)

63

Anti-SRE: Debugger Detection

▪ Changes operation of program if a debugger is
present, must bypass this check to interactively
debug

64

Anti-SRE: Exception Control Flow

▪ If debugging, you’ll observe the following (as
part of normal driver operation):

Program received signal SIGSEGV, Segmentation fault.

0xf76f16a8 in ?? () from libdriver.so

Program received signal SIGFPE, Arithmetic exception.

0xf76f0f6f in ?? () from libdriver.so

▪ Note: slightly different on Windows

65

Anti-SRE: Exception Control Flow 2

▪ Generated exceptions used as a control flow
mechanism

▪ Leverage knowledge of structured exception
handler / signal handling
 Use debugger or investigate calls that register signal/exception handlers

66

Anti-SRE: Indirect Function Calls

▪ Function pointers initialized at runtime, used
to call other function pointers (obfuscated)

67

Analyze the original libdriver (2)

▪ Interacts with the hwsim via serial port

 Initializes some state based on provided values

 Issues commands (Arm, Disarm, etc.)

▪ After 10 commands, the driver will
automatically arm (if not already) and trigger
the IED!

68

Analyze the original libdriver (3)

▪ Reverse engineering further reveals several
additional commands exist in the client:

 0x84698384: Enables another command:

 0x84838431: Sends command data through to a
lightweight virtual machine to be run

▪ How to invoke these commands?

69

The libdriver internal VM

VM Memory:

[0 - 1023] – Program

[1024 - 2047] – Stack

[2048 - 2052] – HW Info

VM Registers:

Program Counter (PC)

Stack Pointer

Top of Stack

Bottom of Stack

Available Ops:

Add / Sub / Mul / Div

And / Or / Xor / Not

Shl / Shr / Rol / Ror

Lit / Dup / Dupn / Swap

Drop / Over / Jz / Nop

Call / Ret

70

HW Info

VM Memory:

[0 - 1023] – Program

[1024 - 2047] – Stack

[2048 - 2052] – HW Info

VM Registers:

Program Counter (PC)

Stack Pointer

Top of Stack

Bottom of Stack

Available Ops:

Add / Sub / Mul / Div

And / Or / Xor / Not

Shl / Shr / Rol / Ror

Lit / Dup / Dupn / Swap

Drop / Over / Jz / Nop

Call / Ret

• Contains hardware info / state:
[2048]: IED State (Armed, Disarmed, Triggered)
[2049 - 2052]: Hardware Info, randomized at runtime

• No op code to read/write it, however…

71

Bugs in the Op Codes - Write

VM Memory:

[0 - 1023] – Program

[1024 - 2047] – Stack

[2048 - 2052] – HW Info

VM Registers:

Program Counter (PC)

Stack Pointer

Top of Stack

Bottom of Stack

Available Ops:

Add / Sub / Mul / Div

And / Or / Xor / Not

Shl / Shr / Rol / Ror

Lit / Dup / Dupn / Swap

Drop / Over / Jz / Nop

Call / Ret

• Divide op will:
• Grab dividend/divisor off the stack
• Push the quotient and remainder

• Does NOT check the lower bound

72

Bugs in the Op Codes - Read

VM Memory:

[0 - 1023] – Program

[1024 - 2047] – Stack

[2048 - 2052] – HW Info

VM Registers:

Program Counter (PC)

Stack Pointer

Top of Stack

Bottom of Stack

Available Ops:

Add / Sub / Mul / Div

And / Or / Xor / Not

Shl / Shr / Rol / Ror

Lit / Dup / Dupn / Swap

Drop / Over / Jz / Nop

Call / Ret• Dupn op will:
• Duplicate a value ‘n’ slots down the stack
• Bounds checks OK, but ‘n’ is treated as signed

73

Bugs in the Op Codes - Read (2)

VM Memory:

[0 - 1023] – Program

[1024 - 2047] – Stack

[2048 - 2052] – HW Info

VM Registers:

Program Counter (PC)

Stack Pointer

Top of Stack

Bottom of Stack

Available Ops:

Add / Sub / Mul / Div

And / Or / Xor / Not

Shl / Shr / Rol / Ror

Lit / Dup / Dupn / Swap

Drop / Over / Jz / Nop

Call / Ret
• Will read up the stack… but what’s there?
• The VM uses the stack as well and as part of program

validation copies the HW info there – memory is not
zeroed out at all

74

Putting it all together

▪ Enable the VM Test command

▪ Use the VM test to upload a program that:

 Reads the HW Info value via the dupn read vuln

 Writes the ARM value via the div write vuln

▪ Get the IED to trigger

 Add 8 commands that trigger the auto-detonate

 Driver thinks it’s already sent the arm command, so
just triggers (thus, triggering before arm – bricked!)

75

Solution Example

raw -2071755727

raw -2073459836 62f9f4ffffff00b71df4080000000578f418

00000005f3ea050205026600

raw 1

raw 1

raw 1

raw 1

raw 1

raw 1

raw 1

raw 1

raw 1

raw 1

76

Solution Example (2)

./client --otp 648476 --script cmd

connecting to host 127.0.0.1

got serverhello

SERVERHELLO signature correct!

Remote OTP label is 784633464

Response: SUCCESS!

Response: SUCCESS!

Server sent back data:

00000000

Response: command FAILed

Response: command FAILed

...

Response: command FAILed

./hwsim

Hardware Simulator Initialized

...

Hardware Simulator Check Status: 91065291

Hardware Simulator Check Status: 91065291

Hardware Simulator Check Status: 91065291

Hardware Updating: 91 -> 06

Hardware TRIGGER without ARM...

HARDWARE FAILURE

Task 6 Complete!

▪ Putting together a “realistic” exploit chain
(read vuln + write vuln = exploit)

▪ Very complex RE, and much thought required

▪ 15 of 3325 students solved (0.5%)

77

Questions

?

78

… if this work interests you, consider applying for an internship or full-time
position at https://www.intelligencecareers.gov/NSA

Check the site for an event code to use when applying (to associate yourself
with the Codebreaker Challenge)

https://www.intelligencecareers.gov/NSA

