MODERN VULNERABILITY
EXPLOITATION:

THE HEAP OVERFLOW

Heap

= Heap
Sometimes called the free store
Dynamically allocated area of memory
Stores global variables
Stores large variables
Stores dynamic variables
Controlled by the heap manager

Heap implementations vary from system to
system

Heap exploits are heap implementation specific
So, heap exploits are system specific

Dynamic Memory Allocation

= malloc()
Allocate a chunk of memory for use

= realloc()
Resizes an allocated chunk of memory

= free()
Return a chunk of allocated memory to the system

Dynamic Memory Allocation

= Properly Used Memory Allocation

¥include <stdio.h>
¥include <stdlib . h>

vold main{int argc, char** argv) {
char %*buf;

buf = (char %) malloci(strlen(argv[l]) + 1);
strcpy(buf, argv[1l]):

printf({"%=\n", buf);

free(buf);

:\Documents and Settings\Jojo\Desktop\Advanced Reverse Engineering\sample_code\
heap>not_vuln.exe hellol23
hellol123

:\Documents and Settings\Jojo\Desktop\Advanced Reverse Engineering\sample_code\
heap>not_vuln.exe 1

Example Heap Vulnerabilities

= Shellcoder's Handbook (Second Edition)

77 Samba
mnencpy(arrav[user_supplied_int]., user_supplied_buffer, user_supplied_int2):

'/ Microsoft IIS
buf = malloc{user_supplied_int+l);
memncpy (buf, user_buf, user supplied_int):

/7 Microsoft IIS off-b i —-a—few
buf = malloc(strlen{user_buf + 5));
strcpyi{buf, user_buf);

/7 Solaris Login

buf = (char *%) malloc(BUF_SIZE):

while (user _buf[1] != 0) {
buf[i1] = malloci(strlen(user_buf[1]) + 1);
1++;

¥

'/ Solaris Xsun

buf = malloc(1024);
strcpy(buf, user_supplied);

I ;

Linux malloc

= Doug Lea’s malloc()
Called dlmalloc

Unallocated memory is grouped into “bins”
A bin is a linked list to all blocks of similar sizes

= Wolfram Gloger’s malloc()
Called ptmalloc

Based on dlmalloc

= glibc’'s malloc()
Modified ptmalloc2 since glibc v2.3

dlmalloc

= Doug Lea’s malloc()

an allocated | sizefstatus=inuse
chunk ... uset data space ...
Si7e index 2 exactbins 4 .. 64 65 sotted bins 127
T skesnmsTtee o IIIIII— s 6 |2 | %2 | [sw2|s6leo|.. |27
i}flﬁid pointer to next chunk 1n bin
pointet to previous chunk 10 bin chuaks
.unused space ...
size
. al]mmm_ |
chunk uset data
size
wildetness | SiZe/status=free ‘
chunk
size

(

end of available memoty

ptmalloc

= Wolfram Gloger’s malloc()
Includes fastbins

prev_size (size of previous chunk)

size (size of chunk) p

. mem -->
index 2 exactbins 4 ... 64 65 sorted bins user data starts here ...

size 16 24 32 512 576 640

next chunk -->

size of chunk

2: {H#EHEIchuck

chunks

chunk --> | prev_size (size of previous chunk)

size (size of chunk) p

mem -->

fd (point to next chunk in list)

bl (point to previous chunk: in list)

4: bins GHTEHE

unused space (may be 0)

next chunk -->
size of chunk

b3.aspx 3: ZEARFIthunk

Windows Private Heaps

= Private Heaps
Every process has a default heap
We can create additional private heaps
HeapCreate()
HeapDestroy()
HeapAlloc()
HeapReAlloc()
HeapFree()

Windows Heaps

= Process Environment Block (PEB)
PEB

Default Heap

Windows Heap

= Windows
Heap is allocated into 8-byte chunks
Called “allocation units” or “indexes”

A set of allocated chunks is called a “block”
18 bytes are needed, how large is our block?

Block headers

Windows Heap

= Windows Heap Block Headers
Size: (size of block + header) /8
Segment index: memory segment for block
Unused: amount of free (additional) bytes
Flink/Blink: pointer to next/previous free block

Self Chunk Size | Prev Chunk Size

Segment
Index Flags | Unused | Tag Index

Busy Block Header Flink (Next Chunk)
Blink (Previous Chunk)

Free Block Header

Windows Heap

= Windows Free List

Free blocks are recorded in an array of 128 doubly-
linked lists

Called the free list

Free List0 [,] FreeBlock [,]| Free Block

Free List 1
Free List 2

Free List 126 | .| Free Block
I Free List 127 I

Windows Heap

= Windows Free List
Index of o holds blocks larger than 127 chunks
And less than 512K
Sorted from smallest to largest

Index of 1 is unused

Ca

Free List0 [| FreeBlock [, | Free Block ‘

Free List 1
Free List 2

Free List 126 | .| Free Block
I Free List 127 I

Windows Heap

= Windows Lookaside List

Freed blocks () are recorded in an
array of 128 singly-linked lists

Called the lookaside list, used for fast allocates
Blocks are added to the lookaside list upon free()
Lookaside list is initially empty

Lookaside List O Free Block Free Block

Lookaside List 1
Lookaside List 2

Lookaside List 126 Free Block

Lookaside List 127

Windows Heap

= Windows Lookaside List

Blocks are freed to the lookaside list first
Each lookaside list item can only hold 4 blocks

Blocks are restored to the free list if the lookaside is
full

Lookaside List O Free Block Free Block NULL

Lookaside List 1
Lookaside List 2

Lookaside List 126 Free Block

Lookaside List 127

| Windows Heap

= Windows Free Block Heap Management

From:
http://www.ptsecurity.com/download/defeating-xpsp2-heap-protection.pdf

Free list N Free entry Last Free entry

Flink (Next block) Flink s Flink

Blink (Prev Block) Blink Blink

doubly-linked freelist

Lookaside list N Free entry Free entry

Flink (Next block) Flink —— Flink

singly-linked lookaside list

Windows Heap

= Allocation Algorithm
If size >= 512K, virtual memory is used (not on heap)

If < 1K, first check the Lookaside lists. If there are no free
entries on the Lookaside, check the matching free list

If >= 1K or no matching entry was found, use the heap
cache (not discussed in this presentation).

If >= 1K and no free entry in the heap cache, use
FreeLists[o] (the variable sized free list)

If a free entry can’t be found, extend heap as needed

Windows Heap

= Free Algorithm

If the chunk < 512K, it is returned to a lookaside or
free list

If the chunk < 1K, put it on the lookaside (can only
hold 4 entries)

If the chunk < 1K and the lookaside is full, put it on
the free list

If the chunk > 1K put it on heap cache (if present)
or FreelLists[o0]

Windows Heap

= Coalescing
Say, two adjacent memory blocks are freed
Windows tries to combines these memory blocks

Takes time
Reduces fragmentation

Combining freed memory blocks in this manner is
called “coalescing”

Only blocks going into the free list coalesce

Windows Heap

* Free to Lookaside Algorithm

Free buffer to Lookaside list only if:

The lookaside is available (e.g., present and
unlocked)

Requested size is < 1K (to fit the table)

Lookaside is not “full” yet (no more than 3 entries
already)

To add an entry to the Lookaside:
Insert into appropriate singly-linked list

Keep the buffer flags set to busy (to prevent
coalescing)

Heap Spraying

= Heap Spraying
Technique developed by SkyLined

Attempts to “spray” information on the heap
Makes position of allocated object predictable

Popular for browser exploitation (esp. JavaScript)
Before Heap Spray
After Heap Spray

Heap Spraying

= Heap Spraying
Load many NOP/shellcode pairs to target heap
Typically, top of heap is allocated out first

So, a jump into this memory space has a good
chance of Indlng ina NOP/shellcode pair

19090%19¢
string of NOP instructions followed by shellcode:

tring length NO de shellcode NULL terminator

nop = nop.substring(0, 0 /2 - shellcode.length

Heap Spraying

= Advanced Heap Spraying
Say, we can overwrite a C++ object on the heap
We can point it into the heap

Perform our heap spray
Wait for/invoke a virtual function call
Ex V|rtual functlon at vtable + 8] is called

get the r}l— ac 11—3:
; pass C++ ~1_: pointer as the first argument
; call :he function at cf‘fat JHE in the vtable

Heap Feng Shuil

» Heap Feng Shui

Techniques that manipulate the heap layout
Often dependent on size of blocks
Plunger technique
Allocate and free 6 large blocks
Clears the heap cache
Defragmenting the heap
Allocate blocks that are the size of our exploit

All available “holes” are filled and new blocks are
allocated from the end of the heap

...Many others:

http://[www.blackhat.com/presentations/bh-europe-o07/Sotirov/Presentation/bh-eu-o07-sotirov-aprig.pdf

Targets for a Heap Overtlow

= Control Pointers
Global offset table (GOT)
Global function pointers
Virtual function pointers (vtable)
PEB function pointer
Thread environment block (TEB)
Unhandled exception filter (UEF)
Vectored exception handling (VEH)
Destructors (.DTORS)
atexit handlers
Stack values
Function pointers in general

= Global/Dynamically Allocated Data
Variables on the heap

Exploiting Heap Metadata

» Coalesce-on-Free 4-byte Overwrite

Say, we have an allocated block (with an overflow)
followed by a free block in memory

We can overwrite Flink and Blink

0x00240000 . '
Size Prev Size
Segment
Index F|aQS Unused

Free Space
0x00250000

Exploiting Heap Metadata

= Coalesce-on-Free 4-byte Overwrite

Say, we have an allocated block (with an overflow) followed
by a free block in memory
We can overwrite Flink and Blink

If our overflow block is coalesced, this code is executed:
i i lecx],eax

Meaning?
Arbitrary 32 bit overwrite (UEF is a common target)
Great method for systems < XPSP2

Exploiting Heap Metadata

= | ookaside List Head Overwrite
4-to-n-byte overwrite
Overwrite a lookaside list head
Allocate that head
Allocated chunk points to value of overwrite

We can overwrite whatever we want
It's like having access to raw malloc calls
Common situation for heap exploits

Exploiting Heap Metadata

= [ookaside List Head Overwrite (How-to)

Use the Coalesce-on-Free Overwrite, with these values:

FakeChunk.Blink = &Lookaside[ChunkSize] where ChunkSize is a
pretty infrequently allocated size

FakeChunk.Flink = what we want a pointer to

To calculate the FakeChunk.Blink value:

LookasideTable = HeapBase + 0x688
Index = (ChunkSize/8)+1
FakeChunk.Blink = LookasideTable + Index * EntrySize (0x30)

Set FakeChunk.Flags = ox20, FakeChunk.Index = 1-63,
FakeChunk.PreviousSize = 1, FakeChunk.Size =1

Exploiting the UEF

* Unhandled Exception Filter (UEF)

“Last ditch effort” exception handler
Our goalis to install our own UEF

Exploiting the UEF

» Unhandled Exception Filter (UEF)
Location is OS and SP dependent

Find the location by disassembling
SetUnhandledExceptionFilter()

NGSSoftware example:

TTETEDAL mov ecx, dword ptr [espt4]

T TETESAS mov eax, [/7ED73B4h]

T TETEDAA mov dword ptr ds:[77ED73B4h], ecx
7 TETESBO ret 4

UEF = ox77ED73B4

Exploiting the UEF

» Unhandled Exception Filter (UEF)

Windows XP

EDI contains a pointer to an EXCEPTION_POINTERS
structure on the stack when UEF is called

ox78 bytes past EDI there’s a pointer to the end of our
buffer (we could make that the start of our shellcode!)

Use our arbitrary 32-bit overwrite to patch the UEF
address to point to:

WinXP: call dword ptr [edi+0ox78]

= Found in netapi.dll, user32.dll, rpcrts.dll
Win2oo0o0: call dword ptr [esi+ox4c]

* Or: call dword ptr [ebp+0x74]

An unhandled exception will trigger the UEF

Exploiting the VEH

= Vectored Exception Handler (VEH)

New feature starting in Windows XP

Vectored exception handling occurs before any
frame-based handlers (like SEH)
Pointer to first VEH node is at a hardcoded address

Our goal is to overwrite this pointer

Exploiting the VEH

= Vectored Exception Handler (VEH)

VECTORED EXCEPTION NODE storedon
heap B B
Windows XP SP2, 0x77FC3210

Pointer to first VECTORED EXCEPTION NODE

struct VECTORED EXCEPTION NODE {
DWORD m pNextNode;
DWORD m pPreviousNode;
PVOID m pfnVectorHandler;

Exploiting the VEH

= Vectored Exception Handler (VEH)

“"Create” our own VEH structure
Fix the first VEH pointer to point to our VEH struct

We find a pointer to our buffer on the stack
Set the first VEH pointer to [buf_ptr - 8]

Exploiting the PEB

= Process Environment Block (PEB)
Stored in heap

Each process has a single modifiable PEB

Contains function pointers to:

* RtlEnterCriticalSection (+ox20 in PEB)
* Called FastPebLockRoutine in PEB

= RtlExitCriticalSection (+ox24 in PEB)
 Called FastPebUnlockRoutine in PEB

Example use:

* ExitProcess() = RtlAcquirePebLock() =2
PEB.FastPebLockRoutine = RtlEnterCriticalSection()

Exploiting the PEB

= Process Environment Block (PEB)

The PEB address is predictable
In WinXP, NT4, 2000, 2003
Not exploitable in Win2003
* Function pointers are randomized
Exploit
Overwrite RtlEnterCriticalSection with pointer to
instruction that executes the back of our buffer

Exploiting the TEB

= Thread Environment Block (TEB)

TEB exception handler pointer
First TEB has a base address of 0Ox7FFDEQ0O
= Grows towards 0x00000000
Say the thread exits

= A new thread will be assigned the old thread's TEB
address

= Leads to a "messy” and sometimes unreliable TEB
Reliable if the address is predictable

Once again, replace pointer with address to an
instruction that will execute the back of our buffer

Repairing the Heap

= Repairing the Heap
Necessary step for exploit stability
Reset the heap to look like a brand new heap
Generic, reusable method
All allocated blocks will stay intact
New allocations are still possible
See NGSSoftware code (asm-repair-heap)

| 0llyDbg HeapVis Plugin

& - [Heap Vis] Q@.
IEIiMe View Debug Plugins Options Window Help x
Bl x| wn] s+ s A - _ltlmllelnlc

Base Block ISize Description
00140000 98142ﬂ68 Used *

80140000 | B0142A602 Used
00140000 | B0142AS88 Used
80140000 | 60142980 Used
00140000 |B0142B30 | 1240 Used
80140000 | 00143003 Free

Used

Look-as id - -

{ | | | | 1 b-l*-l :| :| -»J| | L|E| |T|wjH|c|7]K |
Used

90140000 | 0141EED Used
00140000 | 00141EAD C “Documents and|
00140000 | 0142250 mul»i 7 SettingshJojosD
00140000 | BR1425F Aa14 A esktop\ﬂduanced
Aa142AE6 Reverse Engineer
B« g i N ~
BO24000D | 60242610 Lol ing Eamgle_?ode
00240000 | BO242075 o - eapsnot_vuin. ex
BO240000 | ADZ4600S a014 % e, Kk kcnEmEn
Q0240000 | ADZ40633 i A61d P PN
BB240000 | G024 1FED d - : EEEREERRLR g .

164 ed
00250000 | DO250653 Look-as ide
s n = ' ‘
Se - ey

00330000 | OO33SCES Used Breakpoint at not_vuln.0040103E [F-::uz:r:d
00330000 | 0G330650 | 344 Used —

Free
Used
Used
00330000 | 00334985 | 2072 Osed

| Breakpaint at not_vuln.0040103E [Paused

heap base 00240000

heap base 00330000

8le | 8le €4 &4 | 40 | 88 | 88 3 I 40 | 128 | 1240

10624 53248

0014ZE30 00Z50&88

Heap Vis

Questions/Comments?

